биотехнология, учебник

Содержание главы:


Разделы учебника:


Реклама

Раздел "Культуры растительных клеток"

Культуры клеток высших растений

Культивирование соматических клеток - характеристика, введенеие в культуру, пассирование

В основе культивирования растительных клеток лежит свойство тотипотентности, благодаря которому соматические клетки растения способны полностью реализовать наследственную информацию, то есть обеспечить развитие всего растения. Следует отметить, что в отличие от животной, растительная клетка предъявляет менее жесткие требования к условиям культивирования.

Изменяя условия (добавляя в состав питательной среды те или иные гормоны), можно вызвать дифференциацию недетерминированных клеток. Культура растительной ткани позволяет получить многочисленные популяции в сравнительно короткое время и в ограниченном пространстве. Клетки в условиях in vitro лишаются очень многих важных взаимодействий, которые определяют их судьбу и дифференциацию в целом организме. В определенных пределах дифференциация культивируемых клеток поддается контролю со стороны экспериментатора.

Основным типом культивируемой растительной клетки является каллус. Каллусная ткань - один из видов клеточной дифференцировки, возникает путем неорганизованной пролиферации дедифференцированных клеток органов растения. У растений в природе каллусная ткань возникает в исключительных обстоятельствах (например, при травмах) и функционирует непродолжительное время. Эта ткань защищает место поранения, может накапливать питательные вещества для анатомической регенерации или регенерации утраченного органа.

Образование каллуса не всегда связано с травматическим воздействием. Каллус может возникнуть и в результате пролиферации внутренних тканей экспланта без связи с поверхностью среза из-за нарушения гормонального баланса. Растущий каллус разрывает слои ткани и развивается на поверхности. Для получения культивируемых каллусных клеток фрагменты тканей различных органов высших растений - корней, листьев, стеблей, пыльников, зародышей (эксплан-ты) помещают на искусственную среду, содержащую ауксины, в пробирки, колбы, чашки Петри (in vitro).

В качестве ауксинов используют 2,4-дихлорфеноксиуксусную кислоту (2,4-Д), a-нафтилуксусную кислоту (НУК), индолил-масляную кислоту (ИМК), индолилуксусную кислоту (ИУК) в концентрации 0,5 - 10 мг / л, в зависимости от вида экспланта.

Процессу образования каллуса предшествует дедифференцировка тканей экспланта. При дедифференцировке ткани теряют структуру, характерную для их специфических функций в растении, и возвращаются к состоянию делящихся клеток. Если эксплант, используемый для получения каллуса, является фрагментом органа, то имеет в своем составе эпидермальные клетки, клетки камбия, сосудистой системы, сердцевинной и первичной коровой паренхимы. Преимущественно пролиферируют клетки камбия, коры, сердцевинной паренхимы.

Различное тканевое происхождение каллусных клеток является одной из причин гетерогенности каллусной ткани, так как некоторые функциональные особенности исходных клеток передаются в ряду клеточных поколений как стойкие модификации. В качестве примера можно привести процессы, происходящие при дедифференцировке апикальной меристемы стебля. После помещения на питательную среду меристемы стебля томатов отмечено прекращение митоза, клетки увеличиваются в размерах, теряют характерную для меристематической ткани форму, изменяется структура ядра и цитоплазмы. В готовящейся к делению клетке возрастает синтез всех форм РНК, исчезают тканеспецифичные белки-антигены и появляются белки, специфичные для делящихся клеток и для каллусной ткани. Эти наблюдения свидетельствуют об изменениях в активности генов и белкового аппарата клетки при дедифференцировке.

Активаторами матричной активности ДНК хроматина или активности РНК–полимеразы являются фитогормоны. Рецепторные для фитогормонов белки, локализованные в мембранах, по-видимому, оказывают влияние в присутствии фитогормонов на структуру и функцию мембран. Возможно, это обуславливает действие фитогормонов на генную активность.

Одним из важнейших гормонов, применяемых при культивировании in vitro является ауксин, который активирует деление и растяжение клеток. Проникая в клетки, ИУК связывается со специфическими рецепторами, оказывая влияние на функциональную активность мембран, полирибосом и работу ядерного аппарата. Установлено, что в плазмалемме ауксин индуцирует работу Н+-помпы, в результате чего матрикс клеточных стенок размягчается, что является необходимым условием для роста и растяжения клеток. Включенная Н+-помпа усиливает поглотительную активность тканей, обогащенных ауксином. Предполагается, что поступление ауксина в клетку способствует усиле-нию секреции кислых гидролаз и полисахаридов, необходимых для дальнейшего роста клеточных стенок. Под влиянием ауксина уменьшается продолжительность различных периодов митотического цикла. Так, предполагается, что уменьшается продолжительность периода удвоения числа клеток, продолжительность S - периода, G1 - периода. Все это приводит к значительному ускорению темпов размножения клеток.

Общим моментом в действии ауксинов на деление клеток является также предварительное усиление синтеза и накопление РНК. Стимулирующее действие ауксинов на синтез РНК может быть связано с восстановлением клеток после голодания перед их вхождением в митотический цикл, но может быть также приурочено к прохождению клетками этапов митотического цикла. Особенно отчетливо необходимость синтеза РНК проявляется при прохождении клетками G1 - периода. Под влиянием ауксина усиливается синтез р-РНК, но имеет место и появление новых информационных РНК, причем на очень ранних этапах действия.

Осуществление клетками подготовки к делению на всех этапах митотического цикла зависит от синтеза белков. Ауксин вызывает как общую стимуляцию их синтеза, так и появление новых белков. Это позволяет предположить существование в хроматине структурных генов, транскрипция которых специфически индуцируется ауксином. Реализация действия ауксина на хроматин и последующее деление осуществляется вследствие его проникновения в цитоплазму, образования комплекса с цитоплазматическим ауксиновым рецептором и воздействием этого комплекса на транскрипционную активность хроматина. Кроме этого ауксин усиливает окислительную и фосфорилирующую активность митохондрий, в результате чего улучшается энергетическое и субстратное обеспечение процессов синтеза РНК и белков, репликация ДНК, а также осуществление самого митоза. Этот эффект обнаруживается очень рано и, как и синтез РНК, зависит от проникновения ауксина в клетку.

Для возбуждения процессов подготовки к делению достаточно начального кратковременного действия ауксина. Поэтому процессы, происходящие в клетках под влиянием ауксина, можно разделить на первичные, непосредственно индуцированные ауксином, и вторичные, являющиеся следствием первичного индуцирующего действия. Исходя из этого, можно предположить, что в митотическом цикле растительных клеток имеются кратковременные переходы, когда необходимо присутствие ауксина в клетках, и более продолжительные периоды, когда присутствие ауксинов в клетке не является необходимым.

Читать дальше ► морфофизиологическая характеристика каллуса

Другие главы раздела:


Реклама

написать письмо автору © 1995-2013 Наталья Кузьмина