Культуры клеток высших растений имеют две сферы применения:
1.Изучение биологии клетки, существующей вне организма, обуславливает ведущую роль клеточных культур в фундаментальных исследованиях по генетике и физиологии, молекулярной биологии и цитологии растений. Популяциям растительных клеток присущи специфические особенности: генетические, эпигенетические (зависящие от дифференцированной активности генов) и физиологические. При длительном культивировании гетерогенной по этим признакам популяции идет размножение клеток, фенотип и генотип которых соответствуют данным условиям выращивания, следовательно, популяция эволюционирует. Все это позволяет считать, что культуры клеток являются новой экспериментально созданной биологической системой, особенности которой пока мало изучены. Культуры клеток и тканей могут служить адекватной моделью при изучении метаболизма и его регуляции в клетках и тканях целого растения.
2. Культивируемые клетки высших растений могут рассматриваться как типичные микрообъекты, достаточно простые в культуре, что позволяет применять к ним не только аппаратуру и технологию, но и логику экспериментов, принятых в микробиологии. Вместе с тем, культивируемые клетки способны перейти к программе развития, при которой из культивируемой соматической клетки возникает целое растение, способное к росту и размножению.
Можно назвать несколько направлений создания новых технологий на основе культивируемых тканей и клеток растений:
1. Получение биологически активных веществ растительного происхождения:
традиционных продуктов вторичного метаболизма (токсинов, гербицидов, регуляторов роста, алкалоидов, стероидов, терпеноидов, имеющих медицинское применение);
синтез новых необычных соединений, что возможно благодаря исходной неоднородности клеточной популяции, генетической изменчивости культивируемых клеток и селективному отбору клеточных линий со стойкими модификациями, а в некоторых случаях и направленному мутагенезу;
культивируемые в суспензии клетки могут применятся как мультиферментные системы, способные к широкому спектру биотрансформаций химических веществ (реакции окисления, восстановления, гидроксилирования, метилирования, деметилирования, гликолизирования, изомеризации). В результате биотрансформации получают уникальные биологически активные продукты на основе синтетических соединений или веществ промежуточного обмена растений других видов.
2. Ускоренное клональное микроразмножение растений, позволяющее из одного экпланта получать от 10000 до 1000000 растений в год, причем все они будут генетически идентичны.
3. Получение безвирусных растений.
4. Эмбриокультура и оплодотворение in vitro часто применяются для преодоления постгамной несовместимости или щуплости зародыша, для получения растений после отдаленной гибридизации. При этом оплодотворенная яйцеклетка вырезается из завязи с небольшой частью ткани перикарпа и помещается на питательную среду. В таких культурах можно также наблюдать стадии развития зародыша.
5. Антерные культуры – культуры пыльников и пыльцы используются для получения гаплоидов и дигаплоидов.
6. Клеточный мутагенез и селекция. Тканевые культуры могут производить регенеранты, фенотипически и генотипически отличающиеся от исходного материала в результате сомаклонального варьирования. При этом в некоторых случаях можно обойтись без мутагенной обработки.
7. Криоконсервация и другие методы сохранения генофонда.
8. Иммобилизация растительных клеток.
9. Соматическая гибридизация на основе слияния растительных протопластов.
10.Конструирование клеток путем введения различных клеточных оганелл.
11.Генетическая трансформация на хромосомном и генном уровнях.
12. Изучение системы «хозяин – паразит» с использованием вирусов, бактерий, грибов и насекомых).