биотехнология, учебник

Содержание главы:


Разделы учебника:


Реклама

Раздел "Культуры растительных клеток"

Культуры клеток высших растений

Сферы применения культур растительных клеток

Культуры клеток высших растений имеют две сферы применения:

1.Изучение биологии клетки, существующей вне организма, обуславливает ведущую роль клеточных культур в фундаментальных исследованиях по генетике и физиологии, молекулярной биологии и цитологии растений. Популяциям растительных клеток присущи специфические особенности: генетические, эпигенетические (зависящие от дифференцированной активности генов) и физиологические. При длительном культивировании гетерогенной по этим признакам популяции идет размножение клеток, фенотип и генотип которых соответствуют данным условиям выращивания, следовательно, популяция эволюционирует. Все это позволяет считать, что культуры клеток являются новой экспериментально созданной биологической системой, особенности которой пока мало изучены. Культуры клеток и тканей могут служить адекватной моделью при изучении метаболизма и его регуляции в клетках и тканях целого растения.

2. Культивируемые клетки высших растений могут рассматриваться как типичные микрообъекты, достаточно простые в культуре, что позволяет применять к ним не только аппаратуру и технологию, но и логику экспериментов, принятых в микробиологии. Вместе с тем, культивируемые клетки способны перейти к программе развития, при которой из культивируемой соматической клетки возникает целое растение, способное к росту и размножению.

Можно назвать несколько направлений создания новых технологий на основе культивируемых тканей и клеток растений:

1. Получение биологически активных веществ растительного происхождения:

  • традиционных продуктов вторичного метаболизма (токсинов, гербицидов, регуляторов роста, алкалоидов, стероидов, терпеноидов, имеющих медицинское применение);
  • синтез новых необычных соединений, что возможно благодаря исходной неоднородности клеточной популяции, генетической изменчивости культивируемых клеток и селективному отбору клеточных линий со стойкими модификациями, а в некоторых случаях и направленному мутагенезу;
  • культивируемые в суспензии клетки могут применятся как мультиферментные системы, способные к широкому спектру биотрансформаций химических веществ (реакции окисления, восстановления, гидроксилирования, метилирования, деметилирования, гликолизирования, изомеризации). В результате биотрансформации получают уникальные биологически активные продукты на основе синтетических соединений или веществ промежуточного обмена растений других видов.

2. Ускоренное клональное микроразмно­жение растений, позволяющее из одного экпланта получать от 10000 до 1000000 растений в год, причем все они будут генетически идентичны.

3. Получение безвирусных растений.

4. Эмбриокультура и оплодотворение in vitro часто применяются для преодоления постгамной несовместимости или щуплости зародыша, для получения растений после отдаленной гибридизации. При этом оплодотворенная яйцеклетка вырезается из завязи с небольшой частью ткани перикарпа и помещается на питательную среду. В таких культурах можно также наблюдать стадии развития зародыша.

5. Антерные культуры – культуры пыльников и пыльцы используются для получения гаплоидов и дигаплоидов.

6. Клеточный мутагенез и селекция. Тканевые культуры могут производить регенеранты, фенотипически и генотипически отличающиеся от исходного материала в результате сомаклонального варьирования. При этом в некоторых случаях можно обойтись без мутагенной обработки.

7. Криоконсервация и другие методы сохранения генофонда.

8. Иммобилизация растительных клеток.

9. Соматическая гибридизация на основе слияния растительных протопластов.

10.Конструирование клеток путем введения различных клеточных оганелл.

11.Генетическая трансформация на хромосомном и генном уровнях.

12. Изучение системы «хозяин – паразит» с использованием вирусов, бактерий, грибов и насекомых).

Читать дальше ► история метода

Другие главы раздела:


Реклама

написать письмо автору © 1995-2013 Наталья Кузьмина